The generator matrix 1 0 0 0 1 1 1 0 0 X^2 X^2 1 1 1 1 1 X^2+X X^2+X 1 1 X 1 X^2+X 1 X^2+X 1 X 1 X^2 1 1 1 X^2 1 1 1 X^2 0 X^2+X 1 X^2+X X^2+X 1 X 1 1 X^2 1 X X^2+X X^2 1 0 X 1 1 1 1 0 0 1 1 X^2+X X^2+X X 1 1 X 0 1 1 1 X^2 1 1 0 1 0 X 1 1 1 X^2+X X^2 X^2+X 1 0 1 1 1 1 X^2+X X^2+X 1 0 0 1 0 0 0 1 1 1 X^2 1 1 0 1 1 0 X X 1 X^2+1 X^2+X 1 1 1 X^2 X^2 0 1 X^2+X+1 0 X+1 X+1 X X^2+X X^2+X+1 X^2 X^2+X 1 0 1 X^2+1 1 X X^2+X 1 X^2 X^2+X+1 1 X X^2 0 1 1 X 1 X X X^2+1 X^2 1 1 X^2+X X+1 X^2+X 1 0 X+1 X+1 1 X^2+X 0 X+1 X^2 0 X^2 X^2+X+1 0 X+1 1 1 1 X^2+X+1 X^2+X 1 1 1 X^2+X 1 0 X^2+X X^2 X 1 1 X 1 0 0 1 0 1 X^2 X^2+1 1 1 0 1 X^2 1 0 X^2+1 X^2 1 X X^2+X X^2+1 X^2+1 X X^2+1 X^2+X X^2 X^2+X+1 X^2 X^2+1 1 X^2+X+1 X X+1 1 X X X^2+X X X^2+X X^2+1 X^2+1 X^2 1 X^2+X+1 X+1 X^2+X+1 X+1 X^2 1 1 X^2+X X^2+1 X^2 X^2 1 X^2 X^2+X 0 X^2+X X^2+1 X^2+X+1 X^2 X^2 1 X^2 1 X X+1 X+1 1 X^2+X+1 X^2 X^2+X 1 X^2 X 1 0 X+1 1 X^2+X+1 X^2+X X^2 X^2+X+1 1 X X^2+1 X X X X^2+X 1 1 X X+1 0 0 0 0 1 X^2 0 X^2 X^2 1 1 X^2+1 1 1 X^2+1 X^2+1 X^2+X X+1 X^2 0 0 X^2+X+1 X+1 0 X^2+X+1 1 X+1 X^2+1 X^2+X X^2+X X^2+X+1 X^2+1 X^2+1 X^2+X+1 X^2 0 X+1 X^2 1 X X X+1 1 X^2 X^2 X^2 X X+1 X^2+1 X^2+X 1 X^2+X+1 X 1 1 X+1 X X^2+X+1 1 X 0 X^2+1 X+1 X^2+X X^2 0 X 0 0 X^2+1 X 1 X^2+X 0 X^2+X+1 X X^2+X+1 X^2 X^2+X X X^2+X X^2+X+1 1 X+1 X+1 1 X^2+X+1 X^2 X^2+X+1 X^2+1 X X^2+X X^2+X+1 X X^2 1 generates a code of length 95 over Z2[X]/(X^3) who´s minimum homogenous weight is 89. Homogenous weight enumerator: w(x)=1x^0+320x^89+300x^90+464x^91+323x^92+516x^93+298x^94+336x^95+181x^96+296x^97+150x^98+216x^99+117x^100+192x^101+56x^102+88x^103+28x^104+72x^105+50x^106+40x^107+19x^108+12x^109+10x^110+8x^111+2x^112+1x^116 The gray image is a linear code over GF(2) with n=380, k=12 and d=178. This code was found by Heurico 1.11 in 106 seconds.